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AFSTRACT 

Difference schemes that can be implemented through the fractional time step technique 
of Marchuk are amenable to an expedient which may be termed “a method of zero 
average phase error”. The method involves a linear combination of forward and 
backward time steps. It is applied to a second-order approximation and compared 
with a fourth order approximation. There is a substantial reduction in dispersion. 

I. INTRODUCTION 

With progressing experience in the use of nonlinear difference approximations 
in the solution of fluid flow problems, it has become increasingly evident that the 
methods used have fallen far short of covering the range of applicability which 
was anticipated of them in their early application through the computer. The 
limitations (to low Reynolds numbers, for example) were not understood, nor was 
there any known practical means of giving measure to the relative merit of numeri- 
cally stable schemes. With the appearance of the enlightening work of Roberts and 
Weiss [ 11, it is now evident that limitations of the methods relate to the dispersion 
and dissipation present in the numerical approximation. Numerical dissipation 
dominates in first-order approximations, while in second-order approximations, 
dispersion at high wave numbers becomes the most serious shortcoming. Dispersion 
is common to all methods, but dissipation is absent from time-centered schemes. 
Unfortunately, the explicit time-centered scheme (leap-frog method) has equally 
severe dispersion as counterparts of the same order that are not time centered. 
It appears that one attribute of an artificial viscosity is to eliminate high wave 
number components in the solution. Because of the adverse phase distortions 
of high wave number components, coupled with no dissipation, time-centered 
methods of necessity must use an artificial viscosity if the physical problem does 

1 Also with the IBM Scientific Center, Palo Alto, California. 
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not itself contain a large viscosity. Roberts and Weiss have shown that, with a 
fourth-order time-centered method, those wave numbers which behave adversely 
are more sharply delineated from the meaningful low wave numbers. With this 
fourth-order method a more disciminating use can be made of artificial viscosity. 

In contrast, we shall look here at difference methods that do contain some 
dissipation but by virtue of their derivation have neither dissipation nor dispersion 
for mesh-length transfer of a given variable. These methods are often classed under 
the heading of Lax-Wendroff [2], but notable distinctions exist between them and 
the two-step Lax-Wendroff method used by Burstein [3]. The methods considered 
are all subject to the fractional time step procedure of Marchuck [4] and are of 
the same class as the method employed successfully by Leith [5]. The methods 
must be designed to optimize both amplitude and phase properties of meaningful 
wave numbers. Notable in the improvement of such methods and their extension 
to fourth order is the work of Crowley [6], [7]. 

We describe some additional modification and extensions which are applicable 
in terms of fractional time steps. We first give the amplitude and phase properties 
of the second-order method employed by Leith [5]. With these properties as a 
reference we proceed with a description of the artifice used to give a sharp reduction 
in dispersion in this method. Comparison of the resultant phase and aplitude 
properties are made with the unmodified second-order method and also with the 
fourth-order method of Crowley [7]. 

II. THE SECOND-ORDER FRACTIONAL TIME STEP METHOD 

The fractional time step method involves component-wise addition of convection 
contributions. That is, the results obtained by a one-dimensional calculation are 
operated upon successively to extend the dimensionality. It can be shown that this 
extension of the dimensionality also increases the order of approximation and is 
always expressible as a single step. 

To illustrate, let us consider the Helmholz vorticity equation for ideal fluid flow 
in two space dimensions 

g+++,~=o. (1) 

where w is the vorticity, u and z, are the velocities in the x and y directions, 
respectively, and t is the time. In the incompressible case we obtain a closed set of 
equations by including the velocity divergence equation 
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and the definition of vorticity, namely, 

av au ---z=w. 
ax ay 

Implementation of this system of equations in finite-difference calculations is 
usually achieved by defining a streamfunction # so that 

a* u=ay, 3 
v=-ax’ 

Equation (2) is then identically satisfied and (3) becomes 

(5) 

We consider a fractional time step difference approximation of (1) and write 
to second order in the space variables 

W1.m = 4Jn (4-m - 2GJn + d+,,,,), 
and 

n+1 %.m = ~z,wL + qqB~,,-, - c&,.+1) + @y2 -(4,?n-1 - 24.m + hn,l). 
(6) 

Here I and m are mesh indices in the x and y direction respectively and n is the 
time index such that w;.,, = ~(1 Ax, m dy, n At); 01 and /I are defined by 

ul”, At 
92 =L %.m - Ax 

and 

(7) 

The tilda in (6) indicates fractional time step values resulting from x component 
convection. Expansion of (6) leads to a g-point formula which may also be derived 
geometrically. The g-point formula is stable for OL < 1 and /3 < 1 while the 
associated 5-point truncated formula (an extension of dimensionality without an 
increase in order) is unstable for all but the highest wave numbers. This was shown 
by Leith. 
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To correctly examine the stability and phase properties of (6) we must do the 
analysis in two space dimensions since a one-dimensional analysis will not show 
the stability gained by increasing the order of approximation. 

We proceed by linearizing (6) i.e., let 01 and /3 be assumed constant (to later be 
varied). 

Substituting the Fourier component solution 

wym. = ArlZexp i(k,l Ax + k,m Ay), (8) 

into (6) we may write 

where 

and 

i,,, = 1 - ia sin k, Ax + C?(COS k, Ax - I), 

~z.m+l = (cos k, Ay + i sin k, Ay) FE,, , 

- TZ,,,+~ = (cos k, Ay - i sin k, Ay) P,,, . 

Numerical stability requires that 

(9) 

r7 < 1, 

where i; is the complex conjugate of r. 
Following Roberts and Weiss, we shall examine the properties of r? over the 

stable range of LY and /3, i.e., 0 < 01 < 1 and 0 < /I < 1. If r? = 1 a disturbance 
will neither grow nor damp. This is an ideal property for an approximation of pure 
convection, hence our interest lies in determining how far short we are of this in 
terms of numerical damping. 

In Fig. 1 we have plotted the squared amplitude property r? for a series of wave 
numbers as a function of CY and /I in the range 0 < a < 1 and 0 < ,6 < 1. The 
contours are for prescribed values of rF with reference level rr = 1. The plot 
intervals are a power of 2, chosen such that a near optimum number of readable 
contour levels occur in the individual plots. We have for simplicity taken 
k, Ax = k, Ay = 0 and examined the behavior of ri for 

corresponding respectively to wave lengths 

A = 2Ax, 3Ax, 4Ax, 6Ax, 8Ax, and lOAx. 
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e=21r/3 

FIG. 1. Contour plots of the square of the modulus of amplification for the second order 
method of Eq. (6). See Table I. 

The reference value, t-7 = 1, occurs in each case at 01 = p = 0 and at cx and (or) 
j3 = 1. This absence of damping in the latter instance is consistent with point to 
point transfer of grid values and is implicit in the difference method we are con- 
sidering. The extremum in each of the plots is a point of maximum damping. 
For (y. = fl w 0.75, we have complete damping for the highest finite grid wave 
number, 0 = n. Lesser damping occurs at succeeding lower wave numbers such 
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that, in the low wave number limit, the system (6) will be neutrally stable (r7 = 1) 
everywhere in the range of 01 and /l. The statistics of Figure 1 are given in Table I. 

TABLE I 

STATISTICS OF FIGS. 1 AND 3 (amplitude)* 
INCLUDING FOURTH-ORDER APPROXIMA~ON DATA 

Plot Milklull Plot Minimum Minimum 
Increment (Amplitude)s Increment (Amplitude)a (Amplitude)e 

A 8 (Fig. 1) (Fig. 1) (Fig. 3) (Fig. 3) 4th Order 

2AX 
2:,3 

l/16 0 i/16 0 0 
3Ax l/32 .1916 l/32 .2234 .3621 
4Ax 42 l/64 .5626 l/Q .6103 .7903 
6Ax Sri3 l/128 X789 l/256 9010 .9742 
8Ax d4 l/512 .957.5 i/512 .9665 .9949 

1OAx 7714 111024 .9765 1 I2048 .9859 .9986 

To investigate the dispersion properties of (6) we consider phase errors at the 
higher wave numbers as above. The true phase shift of our component type of 
procedure is given by 

qS1 = -ak, Ax - /3k, Ay. (11) 

The phase shift of the numerical approximation is 

Q, = -tan-l -$$J . (12) 

Here we plot the phase error 

A$= 41-h. (13) 

In Fig. 2 we give contour plots of A$ in the range 0 < 01 < 1 and 0 < ,!I < 1 
for the approximation (6). The contours are for prescribed values of A$ with 
reference level Ac# = 0. Statistics of the plots of Figure 2 are given in Table II. 

We examine the behavior of A4 for successive values 

@=ik ?T z s?!e andR 
3 ‘2’3’4’ 5’ 

The reference value, A+ = 0, occurs in each case at a! = j? = 0 and at LY and (or) 
,8= 1.A s wr ‘th -th rr is is implicit in the difference method since, for a and (or) j? = 1, 
mesh values are passed from point to point. This is true even for 0 = V, but if 
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FIG. 2. Contour plots of phase error, A+, in radians per time step At for the second-order 
method of Eq. (6). See Table II. 

01 and (or) /3 # 1, disturbances for 0 = T do not propogate at all. Because of this 
nonpropogation, which incidentally is common to all difference approximations, 
we delete this highest wave number from consideration as a meaningful part of 
any numerical solution. Fortunately, as Crowley [7] has pointed out, the inherent 
dissipation of the numerical approximation becomes an asset in that it tends to 
remove this nonpropogating mode. 
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TABLE II 

STATISTICS OF FIGS. 2 AND 4 (phase error in radians/time step) 
INCLUDING FOURTH-ORDER APPROXIMATION DATA 

A 

Plot Max Plot Max Max 
Increment Phase Error Increment Phase Error Phase Error 

8 (Fig. 2) (Fig. 2) (Fig. 4) (Fig. 4) 4th Order 

3Ax 2s/3 l/32 - .8826 l/128 *.1415 - .4673 
4A.x 42 1164 - -3947 l/1024 $ .0122 -.1406 
6Ax d3 l/128 -.1291 l/l024 i a075 - .0236 
8Ax d4 l/512 - .0573 l/2048 * DO51 --.0061 

1OAx xl5 l/512 - .0301 114096 &.0031 -.0021 

In the phase error plots of Fig. 2 the extremum in each case is the point of 
maximum error. By definition (13) a phase lag is represented by a negative number 
and we see that, neglecting roundoff, we always have a lagging error for the 
approximation (6). The phase error diminishes rapidly at successively lower 
wave numbers such that in the limit of small wave numbers the error 
vanishes. Borrowing the terminology from physical optics, we say the dispersion is 
“normal”, i. e., the wave velocity increases with increased wavelength. The effects 
are upstream steepening of waves. 

It is almost a general feature of difference methods that they produce dispersion 
of the “normal” type. Assuming that this is to be expected we ask: what can be 
done to reverse the phase error to produce a lead in phase ? The answer, of course, 
is that if we knew an advanced time solution and calculated a solution from it 
for an earlier time, the inherent lag of the difference approximation would represent 
a lead in phase viewed in terms of forward time. 

III. THE ZERO AVERAGE PHASE ERROR METHOD 

To effectively include an advanced time solution to reverse the phase error, 
one immediately considers implicit methods. Unfortunately the presently known 
implicit methods also exhibit a lagging phase error. In the present report, we shall 
make use of the point-to-point transfer of grid values that is inherent in fractional 
time step methods to affect an advanced time. We may think of a local advanced 
time solution corresponding to LY. and (or) /3 = &l. We assume that a directional 
difference approximation can be written and because of the componentwise 
treatment, we can affect an advanced time solution in any direction. Thus, con- 
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sidering an approximation backward in time (backward in time from a projected 
solution for 01 = /3 = l), we can write for (Y and p > 0 

12 
qm = &l,rn + aL*m2- l (w:-z,m - w&) 

+ @% lJ2 (4L2.m - 24-l,, + 

CtJ;,~ = Ql.m-l + szrn; l (4,m-2 - G1.d 

4.m > 
and2 

+ @a”m - II2 
2 p&*,-2 - 2~,,,-1+ ~~,vJ. (14) 

Now Eqs. (14) are a perfectly valid difference procedure and may be derived by 
interpolation upstream. The physical interpretation, inherent in the given form, 
anticipates the leading phase which would not otherwise be self-evident. The 
magnitude of the phase errors are related in their distribution to those of Eq. (6). 
The dissipation likewise is closely related to that of the system (6). 

To take advantage of now having two difference forms of opposite phase error 
we make a linear combination of (6) and (14). While any linear combination will 
improve the phase error a simple average will probably give the best accuracy. 
Thus, for the simple average we obtain for cy. and fl > 0 

and 

(15) 

* Note for example if a < 0 then replace (a;,, - 1) by (LX;,, + 1) and permute I indices on 
the right of the first equation by +2. This gives a backward-in-time difference approximation 
for an a = -1 projection of the solution. 
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Again we will consider a two-dimensional analysis because there exists a related 
form which is identical to (15) in one dimension but is unstable in two dimensions. 
The relation appropriate for analyzing the amplitude and phase properties of (15) is 

where 

P,,, = 1 - 5 sin k, Ax +cosk,Ax- i sin k, Ax) sin k, Ax 

+ $(cosk,Ax- 1) 

+ y (cos k, Ax - i sin k, Ax)(cos k, Ax - l), 

fl,n+l = (cos k, Ay + i sin k, Ay) r”,,, , 
_ 
Y~,+~ = (cos k, Ay - i sin k, Ay) i,,, , 

and 
_ 
Y~,,+~ = (cos 2k, Ay - i sin 2k, Ay) ?,., . 

In Fig. 3 we display the squared amplitude properties of (15) corresponding to 
Fig. 1 for (6). The statistics of Fig. 3 are included in Table I. We note, in particular, 
that the minima in amplification (decay) have been moved to (Y = /3 = + 
and that the minima represent slightly less decay except for the case 
0 = 7r. The improvement near the minimum is negligible, but nevertheless the 
improvement elsewhere is a bonus since we are primarily seeking a reduction in 
in phase errors. The increased decay for 0 = n is also desirable as has been 
pointed out above. 

In Fig. 4 we give contour plots of phase errors incurred with (15) to be compared 
with Fig. 2 for Eq. (6). Of particular significance is that, in addition to having zero 
phase error at 01 and (or) /I = 1, we have zero phase error for (a + j3) = 1, for 
(LX - B) TVN 4 and for (/3 - LX) = 4. This is true for all wave numbers except 0 = 7~, 
which we discard for reasons previously indicated. The maximum phase error has 
been reduced by about a factor of 10 with the largest and most significant 
improvement at the high wave numbers. 

In Fig. 5 we compare the short wavelength phase error magnitude of the zero 
average phase error method with the unmodified second-order method and the 
fourth-order method of Crowley. The very sharp delineation of the mode 0 = 7r 
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a 01 

FIG. 3. Contour plots of the square of the modulus of amplification for the second-order, 
zero average phase error method of Eq. (15). See Table I. 

is evident in the zero average phase error result. With the fourth-order method 
there is still a large error for A = 4dx, however, the improvement over second 
order is considerable. 

In Tables I and II we have included properties of Crowley’s fourth-order method 
with the second-order results here obtained. Damping is less in the fourth-order 
case. One expects that application of the method of zero average phase error to 
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fourth-order approximations is appropriate for a reduction in damping but not 
for a significant improvement in phase error at high wave numbers. 

Data of comparison tests under uniform flow conditions are available in movie 
form as are the data that has been reduced by contour plots. For nonlinear 
application one knows that (6) (see [5]) and, hence (14), are valid. Therefore, the 

FIG. 4. Contour plots of phase error, 04, in radians per time step At for the second-order, 
zero average phase error method of Eq. (15). See Table II. The missing contour line for 8 = 71/3 
is the result of an improbable ambiguity of a pure zero saddle point intersected by a pure zero 
contour line. 
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linear combination of (6) and (14) is also valid. The means of programming 
the method in conservative form and considerations that must be given to boundary 
conditions are the subject of a future paper. 
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FIG. 5. Comparison of the second-order, zero average phase error method with second- and 
fourth-order unmodified fractional time step methods. 

IV. CONCLUSION 

It has been shown that it is possible to design a difference approximation in a 
rational way to reduce phase error. This is in contrast to extensions to higher 
order which improve phase errors less dramatically. The method has been shown 
to be applicable to the “fractional time step” forms and makes use of the property 
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of grid point to grid point transfer of values without dispersion or dissipation. 
In the present report we have applied the technique to a second-order form. The 
resulting phase properties are a considerable improvement over unmodified 
fourth-order forms in the important high wave number region. 
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